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Abstract— Learning to perform manipulation tasks from
human videos is a promising approach for teaching robots.
However, many manipulation tasks require changing control
parameters during task execution, such as force, which visual
data alone cannot capture. In this work, we leverage sensing
devices such as armbands that measure human muscle activities
and microphones that record sound, to capture the details in
the human manipulation process, and enable robots to extract
task plans and control parameters to perform the same task. To
achieve this, we introduce Chain-of-Modality (CoM), a prompt-
ing strategy that enables Vision Language Models to reason
about multimodal human demonstration data — videos coupled
with muscle or audio signals. By progressively integrating infor-
mation from each modality, CoM refines a task plan and gen-
erates detailed control parameters, enabling robots to perform
manipulation tasks based on a single multimodal human video
prompt. Our experiments show that CoM delivers a threefold
improvement in accuracy for extracting task plans and control
parameters compared to baselines, with strong generalization
to new task setups and objects in real-world robot experiments.
Videos and code are available at chain-of-modality.github.io

I. INTRODUCTION

Can robots learn to perform physically challenging manipu-
lation tasks (e.g., twisting to open water bottles or drumming)
by watching only one human hand video demonstration? One
way to enable this capability is through recognizing human
task plans from video and then translating them into executable
robot skills. While recent advances in video understanding
show promising results in action recognition [26], many
manipulation skills require precise specification of the control
parameters, which cannot easily be inferred from pure visual
information, e.g. grasp lightly to rotate a key in hand, push
harder to insert a plug, hit a drum gently to produce a soft
sound. This limitation restricts robots’ ability to perform
diverse manipulation tasks by only watching human videos.

A core challenge here is that extracting task plans from
human video data is difficult since vision-only data lacks
necessary details in recognizing these plans. A key observation
is that many details in human task plans, such as control
parameters like force and speed, are better captured through
additional signals such as human muscle activities and object
interaction sound. For example, when inserting a power plug,
humans would first Grasp the plug with low force to adjust its
orientation in hand, then hold it firmly while Insert it into the
socket. In this work, we leverage sensing devices such as mod-
ern armbands equipped with muscle sensors and sports cameras
with microphones to collect multimodal demonstration videos
that include images, muscle activity, and object interaction

1Google DeepMind 2Stanford University
†Work done while interning at Google DeepMind

Manipulation ProgramsForce (Muscle)

Vision (Video Frames)

Chain-of-
Modality

VLM

VLM

Robot Execution

Multimodal Human Video (one-shot)

Audio

or

Fig. 1: We introduce Chain-of-Modality (CoM), a prompting
strategy that enables VLMs to recognize human task plans from
a single multimodal video with force or audio information, and
generate corresponding robot control code to reproduce the task.

sounds. They provide additional information about when and
how humans exert physical effort during manipulation. However,
effectively utilizing these signals requires new methods for
reasoning from multimodal human demonstration videos.

Vision-language models (VLMs) are capable of solving a
broad range of practical problems, from visual reasoning to
signal processing [63] and even code generation for controlling
robots [30]. Recent advancements in long-context input have
further enabled VLMs to take videos and long-sequence
numerical signals as inputs [10]. This makes us ask: Can
VLMs serve as general reasoning models to infer human
task plans from multimodal demonstration videos? Most
VLM applications still only take one modality as input.
To tackle this challenge, we introduce Chain-of-Modality
(CoM), a framework that prompts VLMs to analyze each
modality one after another, progressively refining the answer
by incorporating new information from each modality.

CoM enables VLMs to extract task plans and control
parameters by analyzing a single multimodal human video.
With CoM, the inclusion of additional modalities helps VLMs
better segment subtasks. For instance, when a human is
opening a bottle, three peak signals in the force data indicate
three Twist motions. CoM enables the VLMs to leverage
this information to first segment the entire task into a coarse
task skeleton and progressively filling in more details by
incorporating other modalities. Additionally, force information
acquired from additional modalities allows VLMs to generate

https://chain-of-modality.github.io
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Right hand:
* t=22: apply force
* t=35: release force
* t=43: apply force
……

Right hand:
* t=22: apply force, grasp sth
* t=22-35: twist sth counterclockwise for 180°
* t=35: release force, release grasp
* t=35-43: twist sth clockwise for 180°

Right hand:
* t=22: apply force, grasp bottle cap
* t=22-35: twist cap counterclockwise for 180°
* t=35: release force, release grasp
* t=35-43: twist fingers clockwise for 180°

def main():
    Move_to(‘right’, Find(‘bottle_cap’))
    Grasp(‘right’)
    Twist(‘right’, ‘counterclockwise’, 180)
    Release(‘right’)
    Twist(‘right’, ‘clockwise’, 180)

3. Answer (Force + Hand + Image)
Answer (Force + Hand + Image)

Muscle Sensor (EMG)

Fig. 2: Overview of Chain-of-Modality (using force as an example). (a) Baseline method - Merged: Merges multimodal
information (vision, force, and hand pose) into a single input batch and queries the VLM to directly generate the final
answer. (b) Chain-of-Modality (CoM): Analyzes each modality step-by-step, refining the analysis to produce the final answer.
Example: First, the VLM uses force data to determine when force is applied. Then, with hand pose information, it infers
that the human is grasping and twisting. Next, with image data, the VLM identifies the action as twisting a bottle cap. Finally,
VLM transform the CoM analysis into a robot-executable Python program to reproduce the task.

more accurate control parameters for skills like Grasp and
Hit with different level of force. Empirically, we found that
CoM has achieved a 60% accuracy in extracting exact task
plans and control parameters from human video. Methods that
rely solely on vision-only data have zero accuracy, and naı̈ve
methods that directly query the model with all modalities in
a single batch achieve an average accuracy of 17%.

How do we turn these task plans into robot actions?
Prior work [30] has demonstrated that foundation models
can generate robot-executable API calls based on language
instructions. Our setting is different in the sense that we
ask foundation models to generate API calls based on a
multimodal demonstration video. These API calls provide
benefits of cross-embodiment generalization since the code
API can abstract away robot embodiment, allowing smooth
deployment across different robots. In addition, code API
based on advanced vision models further enable the robot to
generalize to novel objects and unseen object configurations.

Our main contributions are as follows:

• Chain-of-Modality (CoM): A prompting strategy that
enables VLMs to reason from multimodal human video
demonstration data by progressively incorporating vision
and force information.

• One-shot manipulation program generation: A pipeline
for generating robot control programs from a single
multimodal human demonstration video, integrating force
information (obtained through muscle or audio signals) to
produce fine-grained control parameters of different skills.

• Generality: We show the benefit of CoM is consistent
across two advanced VLM models, and that our method
allows the VLMs to learn from a single human video to
write robot code that works on different real-world robot
platforms with generalization capabilities.

II. RELATED WORK

Human Activity Understanding from Video. Under-
standing human activities in video has been a long-standing
focus in computer vision [6, 12, 16, 17, 29]. Early works
primarily aimed to capture the high-level semantic meaning of
videos through classification [56, 61]. In efforts to extract more
detailed information, later studies began to focus on deriving
task plans from videos [7, 20, 67]. However, these methods
tend to be limited by their reliance on specific training datasets,
making it challenging to generalize to unseen action categories.
In recent years, the development of large vision-language
models has led to impressive results in prompting VLMs to
understand human activities from videos [25]. Unlike prior
works, our work focuses on reasoning multimodal human videos
with force or audio information, providing essential information
for downstream fine-grained robot manipulation tasks.

Foundation Models for Robotics and Control. In recent
years, foundation models have demonstrated significant
progress in robotics, spanning high-level reasoning to
low-level control [15, 19]. Earlier works primarily focused on
language-conditioned robotic reasoning and planning, where
tasks were defined using natural language [2, 9, 21, 23, 32, 33,
39, 51, 57, 66]. However, some manipulation tasks—especially
those involving spatial ambiguity or requiring fine-grained
control—are difficult to specify using language alone.
Recent advances in vision-language models (VLMs) have
introduced more expressive task specifications, such as visual
annotations [18, 22, 36, 54]. Our work, on the other hand, uses
single-shot multimodal video as task specifications, enabling
robots to extract task plans and control parameters from
human demonstrations. To apply foundation models to robot
control, several promising approaches have emerged, including
subgoal selection for goal-conditioned policies [11, 46, 50],
reward or constraint generation for trajectory optimization [22,



31, 64], and code generation based on perceptual and control
primitives [30, 52]. Unlike these approaches, which are
conditioned on language inputs, we demonstrate how VLMs can
directly reason from one-shot human video inputs to generate
low-level manipulation programs, providing an alternative way
to prompt robot to perform new tasks with rich visual hints.

Learning Manipulation from Human Video. A plethora
of recent research has explored leveraging human video data
to teach robot manipulation skills [3, 5, 13, 14, 24, 28, 37,
42, 43, 47–49, 53, 55, 58, 60, 62, 65]. These works focus on
extracting different information from human video, such as
object affordance [4, 27], motion trajectories [55, 59, 68], task
dynamics [34, 41], and reward representations [8, 35, 44, 45].
Works like [24, 55, 68] train manipulation policies that are
conditioned on human or robot videos, instead of language
instructions. Despite their effectiveness, because such methods
only learn from videos (sequence of images), they cannot infer
important details, such as how much force to apply, required for
many manipulation tasks. In this work, we focus on developing
methods that can leverage multiple sensing modalities, including
images, forces, and sounds, to better understand the subtle
details in human demonstrations that are not readily visible,
and to enable robots to better perform such tasks.

III. LEARNING FROM MULTIMODAL HUMAN VIDEOS

We introduce our system design, which takes a single
multimodal human demonstration video as input, and generates
a robot executable code to perform the manipulation task
demonstrated in the video. The system has three main compo-
nents: (1) collecting multimodal human videos; (2) Chain-of-
Modality for understanding multimodal human videos; and (3)
generating code and controlling the robot. For each component,
we first discuss the motivation, followed by examples.

A. Multimodal Human Demonstration Video
Videos often struggle to capture important details of

fine-grained details of a human performing a manipulation
task, especially those involving force application. For example,
when inserting a power plug (Fig. 3), we first apply light
force to adjust its orientation, then increase force for insertion.
These varying force levels are critical but hard to observe
from video alone, highlighting the need for multimodal data
that goes beyond visual information.

To address these challenges, we consider multimodal human
video consists of, at each timestep, an RGB image, human
muscle signal or object interaction sound, and hand pose
(Fig. 1). They collectively provide a more comprehensive view
of human task plans. Human muscle signals captured by an
armband with muscle sensors (EMG) or object interaction
sound captured by a microphone can provide necessary force
information, which indicates the timing and the amount of
force human applied during the entire task. Moreover, to
provide more detailed information on human hand motions, we
use a vision-based method [38] to estimate hand pose and treat
the pixel locations of the fingertips as another input modality.

B. Chain-of-Modality
Next, we use Vision Language Models (VLMs) to analyze

the rich information provided in such multimodal human videos
to extract task plan descriptions. The VLM needs to process

signals from all these modalities: recognizing the human actions
in the correct temporal order and determining the control
parameters of each action (e.g., name of the target object,
direction of the motion). One way to use a VLM for this purpose
is to directly query the model with all modalities interleaved
together in a sequence (Fig. 2(a)). However, we found that state-
of-the-art VLMs (e.g. Gemini 1.5 Pro [40], GPT-4o [1]) often
struggle to correlate information between modalities, leading
to issues like neglecting certain inputs or attempting to extract
information from the wrong modality. To improve VLMs’
performance in understanding multimodal human videos, we
propose Chain-of-Modality (CoM, Fig. 2(b)), a prompting
strategy that queries the VLM to analyze each modality
sequentially, extracting key information and progressively
aggregating results to produce the final answer.

Prompting Chain-of-Modality. The CoM prompt consists
of three parts: (1) descriptions of each modality and their input
data format, (2) description of the available action set along
with an explanation of action parameters, and (3) one example
of video-to-analysis pair introducing how each modality should
be analyzed to produce a sequence of recognized actions with
parameters.

Examples of Chain-of-Modality. Fig. 2 illustrates an exam-
ple of using CoM to analyze a multimodal human video. In this
video, a person holds the bottle with the left hand and twists the
cap with the right hand. CoM sequentially analyzes each input
modality and refines the answer based on the prior analysis. In
Fig. 2, we highlight the new information contributed by each
modality with a separate color. In the first stage, the VLM ana-
lyzes force or auditory signals and finds out when the person ap-
plies and releases force. Then it deduces the number of times the
person applied force. However, without hand and image infor-
mation, it is unclear what the person is doing exactly. In the sec-
ond stage, the VLM incorporates hand pose information. It now
recognizes that the person is grasping and twisting during force
application. The finger position also indicates a counterclock-
wise twist of about 180 degrees while holding the bottle and
a clockwise finger rotation during release. Still, without image
data, the objects that appeared in the task remain unknown. In
the third stage, the VLM integrates image data. It identifies that
the left hand is holding the bottle and the right hand is twisting
the cap. With this information, the VLM generates action func-
tions, specifying detailed action parameters at each time step.
Note that, none of the tasks or objects appear in the example
prompts. The example prompts are only used to demonstrate the
output format of the analysis and the library of available skills.

C. Writing Robot Code
Based on the human video analysis obtained above, the final

step is to transform the action sequence into robot-executable
code with low-level API calls. We use the same VLMs to
perform this code generation [30] to create manipulation
programs to accomplish the task. Prompts for code generation
include the video analysis as well as descriptions of robot
APIs and the required output format e.g.,
from skills import Grasp, Release, Twist, Find, Move_to
# Based on video analysis and APIs, generate python code:

Examples of Generating High-Level Task Plans. Below
is an example of the generated program for the aforementioned
bottle-opening task:
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Fig. 3: Overview of Experiment Tasks. (a) Multimodal Human Video Input: Our framework processes a single-shot human
video with force or audio data, using Chain-of-Modality to extract the task plan and control parameters, then generates a
robot control program. (b) Robot Code Execution: The robot executes the program to replicate the task observed in the
video. (c) Evaluation Setups: We evaluate the performance of generated program in various experimental setups.

Move_to(’left’, Find(’bottle’))
Grasp(’left’)
Move_to(’right’, Find(’bottle_cap’))
for _ in range(3):

Grasp(’right’)
Twist(’right’, ’counterclockwise’, 180)
Release(’right’)
Twist(’right’, ’clockwise’, 180)

VLM incorporates the video analysis from CoM and generates a
detailed task plan for opening a bottle, which includes using the
right gripper to Twist counterclockwise while holding the cap
and Twist clockwise without holding the cap. It also generates
a for-loop script to specify the periodic twisting motion.

Examples of Generating Control Parameters. Besides
generating task plans, in contact-rich tasks such as inserting
a plug into a power strip, VLM can also generate control
parameters to specify the use of force:

from skills import Grasp, Push_towards, Insert
Grasp(’right’, ’plug’, 100) # force range from [0, 100]
Move_to(’right’, ’box’, 20) # rotate plug in-hand
Insert(’right’, ’power_strip’, 100)

Leveraging the force information from the multimodal human
video, VLM specifies the amount of force to apply during
different task stages, allowing the use of Move to to re-orient
the plug in hand by pushing towards the wall (force = 20)
and to hold the plug firmly while Insert it into the power
strip (force = 100).

D. Implementation Details

Data Collection. The muscle signal (EMG) contains eight
channels of data sampled at 200Hz. Since the camera records
at 60Hz, we downsample the muscle signals to match the

camera sampling rate and use the maximum value across the
eight channels as the force signal at each time step. Similar
to audio signals, we compute the loudness of the sound at
each time step as the input audio value. For the hand pose
estimation, we use HaMeR [38] to localize the pixel locations
of the fingertips. More details of the signal processing steps
can be found in the Appendix.

Robot Execution. The robot API calls consist of predefined
control functions that “ground” the generated programs in a real-
world robot system. These APIs benefit significantly from recent
advances in perception models. For instance, in our experiments,
all object localization is performed by querying Gemini 1.5 Pro
with an RGB-D image and the name of the target object (as
specified in the generated programs), which directly generates
a 2D bounding box around the target object on the RGB image.
We then use the depth information and camera parameters to cre-
ate 3D point clouds of the entities within the detected bounding
box and use the average 3D location to represent the object’s po-
sition. These open-vocabulary APIs simplify the connection be-
tween the generated programs and the robot perception system,
directly enhancing the capability of the code-based robot policy.
More details of the robot APIs can be found in the Appendix.

IV. EXPERIMENTS

Our experiments aim to answer the following questions:
Q1: Does Chain-of-Modality improve VLMs’ understanding

of multimodal human videos?
Q2: Does force information help VLMs in reasoning about

human task plans?
Q3: Does hand pose aid fine-grained manipulation?



Task Plan Generated by CoM
LEFT Hand:
        * t=11: Grasp(left, coconut_water)
RIGHT Hand:
        * t=27: Grasp(right, coconut_water_cap)
        * t=27 to t=37: Twist(right, counterclockwise, 180 degrees)
        * t=37: Release(right)
        * t=37 to t=50: Twist(right, clockwise, 180 degrees)
        * t=50: Grasp(right, coconut_water_cap)
        * t=50 to t=62: Twist(right, counterclockwise, 180 degrees)
        * t=62: Release(right)
        * After t=62: Twist(right, clockwise, 180 degrees)

Video Frames

Muscle Signal Strength over Time Muscle Signal Strength over Time Muscle Signal Strength over Time Audio Volume over Time

Video Frames Video Frames Video Frames

Task Plan Generated by CoM

LEFT Hand:
        * t=0 to t=49: No Left hand in the video.
RIGHT Hand:
        * t=12: Grasp(right, usb, 100 force)
        * t=12 to t=25: Move_to(right, adapter, 100 force)
        * t=25 to t=34: Move_to(right, adapter, 20 force)
        * t=34 to t=48: Insert(right, usb, 100 force)
        * t=48: Release(right)

Task Plan Generated by CoM

LEFT Hand:
        * t=0 to t=99: No Left hand in the video.
RIGHT Hand:
        * t=15: Grasp(right, red_eraser, 20 force)
        * t=15 to t=41: Wipe(right, red_marker, 20 force)
        * t=41 to t=65: Wipe(right, red_marker, 100 force)
        * t=65 to t=70: Wipe(right, red_marker, 100 force)

Task Plan Generated by CoM

LEFT Hand:
        * t=0 to t=99: No Left hand in the video.
RIGHT Hand:
        * t=24 to t=29: Hit(right, drum, 100 force)
        * t=30 to t=35: Hit(right, drum, 100 force)
        * t=36 to t=42: Hit(right, drum, 100 force)
        * t=62 to t=64: Hit(right, drum, 20 force)
        * t=82 to t=84: Hit(right, drum, 50 force)
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Fig. 4: Qualitative results for Chain-of-Modality. We showcase task plans generated by CoM for four evaluation videos. CoM
successfully segments the videos into subtasks, specifying the skills, force, and target objects at each stage.

Fig. 5: Quantitative results for Chain-of-Modality. We compare CoM with baselines across three tasks using both Gemini and GPT.

Q4: Can VLMs with CoM extract control parameters from
multimodal human videos?

Q5: How does the generated program perform on real robots?

A. Experiment Setups

Baselines. We categorize the baselines into two groups:
baselines with different input modalities and baselines with
different VLM reasoning procedures. For methods with
different input modalities, the baselines include: (1) Image-only
– uses only video image inputs, (2) w.o. img – uses force
and hand pose inputs without image inputs, (3) w.o. force –
excludes force input, (4) w.o. hand – excludes hand pose input,
and (5) All – utilizes all three input modalities: force, hand
pose, and image. For methods with different VLM reasoning
procedures, the baselines include: (1) Merg – merges all
modality inputs and directly generates the final answer, (2)
Merg-Sep – merges all inputs but generates separate answers
for each modality, (3) Sep-Merg – separate each modality
inputs, then directly generates one final answer, (4) Sep-Sep –
separates each modality input and generates separate answers
for each, followed by a final answer, and (5) Ours – processes
each modality sequentially, analyzing each modality based
on the analysis of the previous one until the final answer.

Tasks. We design two categories of tasks: multimodal
video analysis and real-world robot evaluation with generated
programs. In multimodal video analysis, we test all methods
on four tasks: Pressing Cube, Inserting Plug, Playing Drum,
and Opening Bottle. These tasks feature long task horizons,
force sensitivity, and bi-manual manipulation. Each task
consists of 10 testing videos with varying objects and camera
viewpoints. For each baseline, we query VLM three times
per video and report the average success rate in generating
the correct human task plans observed in the video, along
with the similarity score, which is calculated by finding the

longest common string between the output and the ground
truth. For all four tasks, we test with two advanced VLM
models: Gemini 1.5 Pro [40] and GPT-4o [1]. In real-world
robot evaluation, we test four tasks (Fig. 3): Opening Bottle,
Inserting Plug, Wiping Board and Playing Drum. Each method
is tested with 20 trials, and we report the average success rate.

For testing the generalization capability, as Fig. 3(c)
illustrated, we test Opening Bottle with 7 types of bottle (6
unseen); we also randomly placed the plug, power strip, and
box in Inserting Plug task. In Wiping Board, we draw marker
with different shapes with varying positions on the board. In
Playing Drum task, we test different drumming beats. For
testing the cross-embodiment deployment of our method,
we test the Opening Bottle task on two robot platforms: the
bi-manual ViperX and the bi-manual KUKA.

Prompts. For video analysis tasks, the prompts we use
include an explanation of the input data format and one
example video. The input format explains the hand pose data,
which consists of 2D pixel locations of the thumb and middle
fingertips. The muscle or audio signals is normalized to a single
float value. The example video involves a human interacting
with task-irrelevant objects in random manner. For instance,
both the Pressing Cube and Opening Bottle tasks use the same
example video, where the human is pressing and rotating an
apple and a can on the table. This video demonstrates only
the key features of primitive skills, which does not include the
testing objects or task plans. We also provide expected output
for the example video, helping the VLM generate responses in
the same format, which facilitates benchmarking the results. In
each evaluation task, all baseline methods use the same example
video. After prompting, we provide the testing video without
task description and directly let VLM generate its analysis of
the input multimodal video. For real-world robot evaluation,
the prompts include the video analysis previously generated by



Pressing
Cube

Opening
Bottle

Inserting
Plug

Playing
Drum

Gemini 1.5
Pro

Image-only 0.00/0.68 0.00/0.32 0.00/0.80 0.00/0.31
w.o. img 0.00/0.00 0.00/0.45 0.00/0.00 0.00/0.00
w.o. force 0.00/0.68 0.00/0.64 0.00/0.72 0.00/0.03
w.o. hand 0.70/0.96 0.00/0.49 0.47/0.96 0.57/0.90
All 0.67/0.92 0.37/0.75 0.53/0.93 0.80/0.96

GPT-4o

Image-only 0.00/0.48 0.00/0.43 0.00/0.77 0.00/0.37
w.o. img 0.00/0.00 0.00/0.53 0.00/0.00 0.00/0.00
w.o. force 0.00/0.13 0.00/0.20 0.00/0.55 0.00/0.22
w.o. hand 0.43/0.76 0.00/0.54 0.30/0.81 0.34/0.84
All 0.40/0.84 0.00/0.46 0.33/0.79 0.43/0.86

TABLE I: Multimodal eval (Accuracy / Similarity Score).
Opening Bottle

(ViperX)
Opening Bottle

(KUKA)
Insert
Plug

Wiping Board
(red marker)

Wiping Board
(blue marker)

Playing
Drum

Ours 12/20 15/20 15/20 16/20 14/20 16/20
Oracle 16/20 20/20 18/20 20/20 16/20 20/20

TABLE II: On-robot evaluation results. All results are obtained
in the generalization settings introduced in the Task section.

the our CoM pipeline, along with the definitions of robot API
calls in Python format. We then ask the VLM to generate the
main function to reproduce human task plans from the video
analysis. After the VLM generates the program, we use exec()
to execute the generated code on the real-world robot.

B. Results
Chain-of-Modality helps in understanding multimodal

human videos. In Fig. 5, we compare baseline methods
and Chain-of-Modality across three tasks using both Gemini
1.5 Pro and GPT-4o. We first observe that processing and
analyzing each modality separately consistently outperforms
other baselines that either merge the modality inputs or generate
a single merged answer. Both Sep-Sep and CoM achieve the best
performance in all tasks with different VLMs. CoM further out-
performs Sep-Sep by more than 19% with Gemini 1.5 Pro and
17% with GPT-4o. This result indicates that although advanced
VLMs have long-context inputs, directly reasoning over long-
context inputs remains challenging. CoM’s per-modality analy-
sis and progressively fulfilling the final answer is more suitable
for current VLMs to reason from multimodal human videos.

Force information benefits learning from human videos.
In Tab. I, we compare methods with different input modalities.
We observe that images play a crucial role in recognizing
task objects, as w.o. img baseline achieve no success. For
tasks like Opening bottle, the main skill Twist doesn’t rely on
object names, yielding a decent similarity score, but in general,
images are essential. Force information greatly enhances the
understanding of human task plans. Methods with force inputs
(w.o. hand and All) significantly outperform those without. This
indicates that extracting key information for manipulation purely
from images is still challenging. Force inputs help VLMs better
segment the video into different stages, leading to an average of
42% improvement in the similarity score between the extracted
task plan and the ground truth (All v.s. w.o. force). Without
force information, the baselines achieve no success in predicting
the correct task plans and skill parameters from human videos.

Hand pose helps understand fine-grained manipulation.
In the Opening Bottle task, only the method with all modalities
as input (All) achieves a non-zero success rate. This task
requires extracting fine-grained information about fingertip

rotation direction, along with multiple instances of grasping and
releasing the bottle cap (as illustrated in the qualitative results,
Fig. 5, first column). Hand pose plays a crucial role in this
task, indicating that current VLM models are not yet proficient
at extracting human hand motions. The hand pose estimated by
specialized vision models [38] provides significant assistance.

CoM is capable of extracting control parameters from
multimodal human videos. In the qualitative results shown
in Fig. 5, CoM successfully (1) identifies task plans and target
objects for single-arm or bi-manual tasks from multimodal
human videos and (2) extracts detailed control parameters,
including motion direction, force intensity, and timing of each
action. This information paves the way for generating robot
executable programs to perform the same task.

VLMs can generate manipulation programs based on
CoM analysis. Although CoM can generate task plans from
a single human video, these plans still lack detailed robot API
calls, such as Find the target object and Move to the object’s
location before Grasp. VLMs can fill in these missing sub-steps
and generate final robot-executable Python API calls. In Tab. II
and our video submission, we demonstrate how the final
generated program controls the robot to perform the task with
an average success rate of 73% across all tasks, showing strong
generalization to novel objects (e.g., opening 8 unseen bottles,
wiping a board, and inserting a power plug with randomized
object placements). This video demonstrates only the key
features of primitive skills, which does not include the testing
objects or task plans. The Oracle results (92%) showcases
the upper bound of the robot system with manually-created
robot code for each task. Notably, the Find API call we use
is implemented by directly querying Gemini 1.5 pro, which
generates 2D bounding boxes from free-form language inputs
and further processes them into 3D locations using RGB-D
images. This highlights the potential of leveraging VLMs for
straightforward implementation of low-level robot API calls. In
the Opening Bottle task, we tested our framework on two types
of bi-manual robots (ViperX and KUKA), demonstrating the
potential for cross-embodiment deployment of our method.

V. CONCLUSION AND LIMITATIONS

We present Chain-of-Modality (CoM), a prompting strategy
that enables Vision-Language Models (VLMs) to understand
multimodal human video demonstration data by combining
video with force or audio inputs. By progressively refining
task plans and control parameters through each modality,
CoM enhances robots’ ability to perform one-shot imitation
from human videos in fine-grained manipulation tasks. Our
experiments show that CoM significantly improves the
accuracy of task plan recognition and control parameter
extraction compared to baselines, with strong generalization to
new task setups and objects in real-world robot experiments.

The limitations of this work include: (1) The audio modality
we use focuses only on the volume of impact sounds, without
fully capturing other aspects such as frequency and pitch. Future
work could explore the broader use of audio in foundation
models for multimodal human video reasoning. (2) In this work,
we focus on extracting task plans and control parameters from
human videos and executing them on the robot in an open-loop
fashion. In future work, we plan to explore generating closed-
loop control programs that can adapt to unexpected situations.
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